首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14717篇
  免费   2960篇
  国内免费   2233篇
化学   9693篇
晶体学   259篇
力学   1778篇
综合类   157篇
数学   1527篇
物理学   6496篇
  2024年   13篇
  2023年   191篇
  2022年   384篇
  2021年   445篇
  2020年   634篇
  2019年   519篇
  2018年   542篇
  2017年   614篇
  2016年   766篇
  2015年   661篇
  2014年   947篇
  2013年   1509篇
  2012年   1040篇
  2011年   1026篇
  2010年   850篇
  2009年   919篇
  2008年   961篇
  2007年   992篇
  2006年   873篇
  2005年   771篇
  2004年   706篇
  2003年   659篇
  2002年   504篇
  2001年   467篇
  2000年   454篇
  1999年   362篇
  1998年   357篇
  1997年   265篇
  1996年   227篇
  1995年   217篇
  1994年   209篇
  1993年   155篇
  1992年   134篇
  1991年   90篇
  1990年   67篇
  1989年   68篇
  1988年   58篇
  1987年   44篇
  1986年   42篇
  1985年   33篇
  1984年   31篇
  1983年   9篇
  1982年   25篇
  1981年   10篇
  1980年   14篇
  1979年   14篇
  1978年   8篇
  1973年   5篇
  1971年   3篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho‐diphenol)‐containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme‐mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross‐linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface‐confined reactions (e.g., biomineralization, metal ion chelation, and N‐hydroxysuccinimide conjugation).  相似文献   
992.
Large number of lipophilic substances, whose electrochemical transformation takes place from adsorbed state, belong to the class of so‐called “surface‐redox reactions”. Of these, especially important are the enzymatic redox reactions. With the technique named “protein‐film voltammetry” we can get insight into the chemical features of many lipophilic redox enzymes. Electrochemical processes of many redox adsorbates, occurring at a surface of working electrode, are very often coupled with chemical reactions. In this work, we focus on the application of square‐wave voltammetry (SWV) to study the theoretical features of a surface electrode reaction coupled with two chemical steps. The starting electroactive form Ox(ads) in this mechanism gets initially generated via preceding chemical reaction. After undergoing redox transformation at the working electrode, Ox(ads) species got additionally regenerated via chemical reaction of electrochemically generated product Red(ads) with a given substrate Y. The theory of this so‐called surface CEC’ mechanism is presented for the first time under conditions of square‐wave voltammetry. While we present plenty of calculated voltammograms of this complex electrode mechanism, we focus on the effect of rate of regenerative (catalytic) step to simulated voltammograms. We consider both, electrochemical reactions featuring moderate and fast electron transfer. The obtained voltammetric patterns are very specific, having sometime hybrid‐like features of voltammograms as typical for CE, EC and EC’ mechanisms. We give diagnostic criteria to recognize this complex mechanism in SWV, but we also present hints to access the kinetic and thermodynamic parameters relevant to both chemical steps, and the electrochemical reaction, too. Indeed, the results presented in this work can help experimentalists to design proper experiments to study chemical features of important lipophilic systems.  相似文献   
993.
In the present research, a multifunctional hierarchical reinforcement was prepared by chemical modification of carbon fibers (CFs) with halloysite nanotubes (HNTs) by the bridging diethylenetriaminepentaacetic acid (DTPA) for improving interfacial microstructures and properties of composites. Surface structures and groups of modified HNTs and CFs were characterized systematically. The uniform distributions of the introduced DTPA and HNTs helped to increase fiber polarity, surface energy, and wettability. As a consequence, significant enhancements of interfacial properties and hydrothermal aging resistance of composites were achieved, and interfacial reinforcing mechanisms have also been studied. Moreover, the storage modulus showed a 17.95% improvement, and the glass transition temperature was enhanced by 17°C by dynamic mechanical analysis testing.  相似文献   
994.
Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface‐rough Rh2Sb nanorod (RNR) and surface‐smooth Rh2Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high‐index‐facet bounded Rh2Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 μg h?1 mg?1Rh at ?0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2Sb SNRs/C (63.07±4.45 μg h?1 mg?1Rh) and Rh nanoparticles/C (22.82±1.49 μg h?1 mg?1Rh), owing to the enhanced adsorption and activation of N2 on high‐index facets. Rh2Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.  相似文献   
995.
Triangular zigzag nanographenes, such as triangulene and its π‐extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high‐spin networks with long‐range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on‐surface synthesis and a proof‐of‐principle experimental study of magnetism in covalently bonded triangulene dimers. On‐surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4‐phenylene spacer. The chemical structures of the dimers have been characterized by bond‐resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet–triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.  相似文献   
996.
Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on‐surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well‐controlled ultrahigh‐vacuum conditions. Here we report the on‐surface synthesis of a polymer linked by cumulene‐like bonds on a Au(111) surface via sequential thermally activated dehalogenative C?C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene‐like pentagon–pentagon and heptagon–heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X‐ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on‐surface synthesis of cumulene‐containing compounds, as well as protocols relevant to the stepwise fabrication of carbon–carbon bonds on surfaces.  相似文献   
997.
Functional materials composed of proteins have attracted much interest owing to the inherent and diverse functionality of proteins. However, establishing general techniques for assembling proteins into nanomaterials is challenging owing to the complex physicochemical nature and potential denaturation of proteins. Here, a simple, versatile strategy is introduced to fabricate functional protein assemblies through the interfacial assembly of proteins and polyphenols (e.g., tannic acid) on various substrates (organic, inorganic, and biological). The dominant interactions (hydrogen‐bonding, hydrophobic, and ionic) between the proteins and tannic acid were elucidated; most proteins undergo multiple noncovalent stabilizing interactions with polyphenols, which can be used to engineer responsiveness into the assemblies. The proteins retain their structure and function within the assemblies, thereby enabling their use in various applications (e.g., catalysis, fluorescence imaging, and cell targeting).  相似文献   
998.
999.
Boron‐containing materials, and in particular boron nitride, have recently been identified as highly selective catalysts for the oxidative dehydrogenation of alkanes such as propane. To date, no mechanism exists that can explain both the unprecedented selectivity, the observed surface oxyfunctionalization, and the peculiar kinetic features of this reaction. We combine catalytic activity measurements with quantum chemical calculations to put forward a bold new hypothesis. We argue that the remarkable product distribution can be rationalized by a combination of surface‐mediated formation of radicals over metastable sites, and their sequential propagation in the gas phase. Based on known radical propagation steps, we quantitatively describe the oxygen pressure‐dependent relative formation of the main product propylene and by‐product ethylene. Free radical intermediates most likely differentiate this catalytic system from less selective vanadium‐based catalysts.  相似文献   
1000.
Abstract

Effective extraction of phyto-biomolecules insures retaining maximum functionality along with higher recovery. In this study, ultrasound-solvent assisted extraction (USAE) was employed for optimal extraction of phyto-biomolecules from Sesamum indicum (sesame) leaves using the approach of Response Surface Methodology (RSM). The optimized condition of 200?W power, 59% methanol concentration with 1:14?g/mL solid–liquid ratio and 15?min of extraction time yielded 367.39?±?1.85?mg GAE/100?g of total phenolic content, 96.72?±?3.27% of free radical scavenging activity and 81.20?±?2.87% of iron chelating activity respectively. The extract consist of essential phytocomponents like gallic acid, chlorogenic acid, and quercetin with lipid peroxidation activities of >50% over incubation time of 48?h. Also, showed antimicrobial activity against various Gram’s negative and positive food borne pathogens. The results of this study implied the importance of USAE for effective and optimum recovery of phyto-biomolecules from Sesame leaves with retained functional properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号